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Abstract-The effect of large concentration gradients upon the rate of mass transfer from a rotating 
disc has been measured experimentally and compared with theory. Measured rates were found to 
agree with the numerical solutions of the variable property, finite interfacial velocity diffusion equation. 
The data were also compared with approximate perturbation and integral solutions of the diffusion 
equation. The systems investigated were benzoic acid, potassium bromide, sucrose, and copper sulfate 
in water. Variations in density, viscosity and diffusivity and the existence of a diffusion-induced 
interfacial velocity can result in differences between the constant property, zero interfacial velocity and 

the actual Sherwood numbers as large as a factor of two. 

NOMENCLATURE 

diffusion coefficient [cmz/s]; 
mass-transfer coefficient based upon 
mass fraction driving force, defined by 
equation (5) [cm/s]; 
solute mass flux relative to a stationary 
observer [g/ems s]; 
ratio of solvent to solute mass fluxes at 
the surface; 
Schmidt number; 
Sherwood number, defined by equation 
(6); 
solute mass fraction ; 
distance normal to the disc; 
film thickness. 

symbols 
coefficient of first term of power series 
expansion of dimensionless axia1 velocity 
about n =O; 
dimensionless axial distance y(w/v0)r’2; 
dimensionless concentration (W - W,)/ 
(W* -- WCC); 
interfacial velocity parameter, equation 
6): 

Subscripts 
0, at the disc surface, 71 = 0; 

~~~ 
in the bulk liquid, n = GO * 
log-mean, xtrn = (A+~ .- z&In (x$Y~). 

Superscripts 
* , for constant properties and zero inter- 

facial velocity (no mass transfer); 
I 
9 denotes differentiation with respect to n. 

IN RECENT years, considerable attention has been 

ED, diffusivity variation parameter, equation 
(9) ; 
density variation parameter, equation 
(4); 
solution density [g/cma]; 
solution viscosity [PI; 
kinematic viscosity [cma/s]; 
rotational speed of disc [s-r]; 
constants describing diffusivity varia- 
tions, equation (10); 
dimensionless diffusion boundary layer 
thickness (the value of n at which 
B = O*OI). 

--._ 
t Present address: Atomics Internation Division, given to predicting mass-transfer rates in 

North American Aviation, Inc., Canoga Park, California, laminar boundary-layer flows. Most of these 
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studies have been restricted to systems in which 
some or all of the properties were assumed 
constant. However, the physical properties of 
many liquid systems are strongly dependent on 
composition, and the variation of density, 
diffusivity, and viscosity across the diffusion 
boundary layer can have a significant effect on 
the mass-transfer rate. In addition, the trans- 
ferring solute leaves or enters the solid surface 
with a finite velocity, which distorts the no mass- 
transfer velocity profiles and consequently alters 
the convective term in the diffusion equation. 
All of these effects become increasingly important 
for transfer under large concentration driving 
forces. 

form is neglected compared to unit (as was also 
done subsequently in reference 3). The retention 
of an arbitrary dtiusivity-composition relation 
in the present formulation permits application 
of equation (1) to a wider class of binary solutions 
than was possible in the earlier work. 

Following the notation of reference 3, the 
symbols in equation (1) are : 

wo - WCC 
EV = l/(1 + S) ~ w, (3) 

The paper describes an experimental study of 
the phenomena associated with high gradient 
transfer. The results are compared with the 
various approximate solutions to the diffusion 
equation. 

d In p 
c,=-(Wo- Wm)dW 

d In p = _ ..__ 
de 

= constant. (4) 

The rotating disc was selected for the experi- 
mental work, since in the region of high Schmidt 
numbers, the mass-transfer behavior of this 
system is similar to that for other boundary 
layer-type flows (e.g. flat plate, falling liquid 
film). Considerable theoretical [lL4] and ex- 
perimental [5, 6j background on the rotating 
disc system is available. 

THEORY 

It has been shown previously [3] that the form 
of the diffusion equation applicable to high 

Equation (2) represents Schuh’s [7] method of 
accounting for velocity profile distortion due to 
viscosity changes. The parameter a* is the sole 
reflection of the flow geometry in the diffusion 
equation; for a rotating disc, it has a value of 
O-510. The parameter EV represents the effect 
of the diffusion-induced interfacial velocity. The 
parameter S in (3) is the ratio of the solvent to 
solute mass fluxes at the interface. In the ex- 
perimental work of this study, it enters in the 
dissolution of CuSO4.5HzO to water. There is a 
flux of water of hydration associated with that 
of the copper sulfate, and S is the ratio of the two. 
The parameter in equation (4) is not truly a 
constant, but for most binary solutions, over 
the concentration ranges usually encountered, 
variation is to slight that it may be considered 
a constant. 

Schmidt number, variable property 
layer type flow is: 

0” + $ [a SC0 -q2 + EV (J 8’ ( 1 
d In (D/Do) - 

6/J - de I 
with boundary conditions: 

e (0) = i 

e(co)=O 

(8’)2 : 

boundary 

0 (1) 

This relation is equivalent to equation (23) of 
reference [3] except that the term d In (D/Do)/d6’ 
in equation (1) above is no longer assumed to be 
a constant (- ED), and the L(v) term in the earlier 

A mass-transfer coefficient is defined on a 
mass-fraction driving force basis by 

kw z 
no 

Po(W* - WC4 
(5) 

The Sherwood number is given by 

sh E [1- Wo(l + 91 kw (d~)~‘~ = _ 8, 
DO 0’ 

(6) 

The middle expression in equation (6) is 
measurable; for comparison with theory, the 
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right-hand member is calculable from a solution 
to equation (1). 

For low driving forces (a = a*, EV = cP = 0, 
D = I?,). Sparrow and Gregg [4aJ have obtained 
an analytical solution to equation (1): 

S/i* = 0.62;Sc$ (7) 

The exact solution to the constant property, 
zero interfacial velocity diffusion equation using 
a seven-term polynomial for the axial velocity 
profile [equations (I) and (7) are based upon a 
one term approximation] shows that equation (7) 
is approached asymptotically as SC -+ CC. At 
SC = 1000, the constant in equation (7) is 
060 rather than O-62. In the presence of property 
variations, an exact solution to equation (1) is 
possible only by numerical integration; a 
computer program has been written for this 
purpose. 

From a practical standpoint, an approximate 
analytical solution would be preferable. The 
~~urbation technique employed previously 131 
predicts : 

Sh/Sh* = (1 + l/2 cp + 0.262 ED - 0.566 6~ 

+ l/6 E,” + 0.046 c’D + 0.407 +, 

+ 0.215 tp ED - 0566 fp l D 

(8) 

The diffusivity variation is embodied in the 
parameter eg, which is: 

E‘f) r.E - ( w, - W*) d lnr$Do) = 

This formulation, however, is quite restricted in 
the range of interfacial velocities and diffusivity 
variations over which it can be applied. A more 
accurate fit to common diffusivity~omposition 
curves can be written as a two-parameter 
polynomial : 

D/Do = 1 - j3 (1 - 0) - y (1 - e2). (10) 

This relation is designed to provide accurate 
diECon coefficients in the region close to the 
wall, where molecular diffusion predominates. 
It can accommodate diffusivity curves with 
minima, while equation (9) cannot. 

A modified integral technique has been 
employed to obtain a solution to equation (1) 
using diffusivities expressed by equation (10). 
This result is a Sherwood number ratio given by 
(see Appendix) : 

Sh (1 - 0.222 y - 0.167 j3)2 

- = 1 - 0.027 y + EV (0544 + 0.012 y) Sh* 
- cp (0.656 - 0.545 y - 0.388 p) 

(11) 

This relation has been compared to exact 
numerical solution of equation (1) for 20 
typical high driving force liquid systems. Over the 
ranges : - 0.7 < Ey < 3.0, - 0.4 < Ep < 0.3, 
and O-33 < D,/Do < 3.0, the integral and exact 
solutions of equation (10) agree to within 
10 per cent. By comparison, the perturbation 
solution, equation (8), is much less satisfactory 
when Jw/ 2 O-4, and when the diffusivity is not 
an exponential function of mass fraction over the 
concentration interval considered. 

Soluble 
dlSC 

/I 
Tank 

i 

FIG. 1. Rotating disc apparatus. 

EXPERIMENT 

The apparatus shown in Fig. 1 was designed 
to measure the rate of dissolution of solid, 
soluble discs rotating in a quiescent liquid. Two 
tank sizes were used: 2 ft x 2 ft x 2 ft and 
8 in x 8 in x 9 in. The tanks couId be filled 
either with pure water or, to alter the driving 
force, with solutions of the disc material. All 
measurements were carried out at 25°C. 

Four systems were studied. The solutes were 
benzoic acid, copper sulfate, sucrose, potassium 
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Table 1. Physical properties of solute-water system at 25 ‘C. 
-I - _.--__.__ . .._ L 

Solute W,” D, i 105 SC, pi0 I.; IO” PO D ( W = 0) I, IO” References 

Benzoic 
acid oGo337 O-94 946 0.89 0.997 0.94 I91 

__I-____C_---~-. -.~-~-~_--ll_ll_____~~~ ~~. 
Potassium 

bromide 0.404 25.5 270 0,950 I.380 2.02 [IO, Ill _.~_ ---_I---_I__ 
Copper 

sulfate O-i84 0.383 5800 2.23 I-210 0% rr0, 121 
-I- _--__ ----_-l__,--____~_I_,.~__---_--____I_ 

Sucrose 0.679 0.35b 4”Ol :* 105 19lG 1.341 0.52” IlO1 
~._._ - .l--_____ .---_..... l~-_----_~~- .-.l-l.__ ._--_._ -“_~--- 

water: p = 0.997 g/c&; 14 = 0.00897 P. 
a. saturation at 25°C; data taken from references 9 and 10. 
b diKusi&ies for 0 < W’ < O-55 from references 13 and i4. A single value was determined from a diaphragm 

ceif measurement at W rr_ 0.61. AI1 data were then combined in a single curve and extrapolated to saturation. 

Observed points 
0 371 rev/mtn 
.I ill0 rev/min 
5 90 rev/min 
0 57 rev/min 

-- - Calculoied iale 

:c 311 4c 
Time, min 

FIG. 2. Mass-transfer measurement for benzoic acidin 
water, 25°C. Theoretical ratio from equations (51, 
(6), and (7), with the constant 0.62 in equation (7) 
replaced by 060. Disc diameters of 2 and 4 in. 

The rate of mass transfer into pure water was 
determined by periodically sampling the bulk 
and analysing. the samples for salute concen- 
tration. For transfer into solutions of finite 
concentration, the rate was measured by weighing 
the disc before and after a run. It was not 
possible to measure the transfer rate of copper 
sulfate for bulk concentrations other than zero. 
The compressed cake tended to absorb water, 
and any method which removed the absorbed 
water also removed an undeterminable amount 
of water of hydration. Additional details can be 
found in reference 8. The physical property of 
the four solute-water systems are listed in 
Table 1. 

RESULTS AND DISCUSSKIN 

B&?Ftz@ic acird 

bromide and, in each case, the solvent was Figure 2 presents the mass-transfer results for 
water. Benzoic acid and copper sulfate discs benzoic acid into water. This system represents 
were formed by compacting the powdered nothing more than a test of the constant property, 
material into smooth, solid cakes. Both 4 and zero interfacial velocity mass-transfer behavior 

2 in dia. benzoic acid discs were used; the copper 
sulfate discs were of 2 in dia. The sucrose discs 
were formed by casting the molten material into 
2 in dia. cylindrical molds which could then be 
attached to the rotating shaft. Disc-shaped, 1 in 
dia. optical crystals of potassium bromide were 
obtained from the Harshaw Chemical Co. 
Benzoic acid dissolution was measured at 
several different rotational speeds, while the 
other systems were ali run at 57 rev/min. 
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of the disc system, since the solubility of ben- 
zoic acid in water is too low for any of the effects 
associated with large driving forces to appear. 
The theoretical transfer rate is based upon the 
seven-term velocity profile. At the Schmidt 
number characteristic of this system, the one- 
term approximation to the axial velocity gives a 
Sherwood number ~3 per cent too large. The 
good agreement between the theoretical and 
experimental results indicate that the hydro- 
dynamic model based upon an infinite disc 
rotating in an infinite body of quiescent fluid is 
in fact realized in the apparatus. 

At 371 rev/min, the deviation between ex- 
perimental and theoretical results is appreciable. 
This is attributed to the tendency of the edges 
of the benzoic acid cake to flake off under the 
action of the centrifugal forces. The experimental 
transfer rates for the 2 and 4 in discs gave the 
same close agreement with the theoretical rate. 

Potassium bromide 
Figures 3(a) and 3(b) present the rates of 

transfer of KBr discs to bulk solutions of 0, 0.1, 
0.25 and O-36 mass fraction. The solid lines in the 
figure were calculated from the numerical 
solution to equation (1). In all cases, the rates 
computed from equation (1) were within the 
experimental error of the measurement. Figure 4 
shows the ratios of the actual Sherwood number 
to that for constant properties, zero interfacial 
velocity (zero driving force) as a function of the 
driving force.7 The most important high driving 
force effects in this system are the density varia- 
tion and the interfacial velocity. The viscosity 

t For the experimental Sherwood number ratios, 
Sh* is calculated with the seven-term axial velocity 
polynomial. For the theoretical ratios, Sh* is calculated 
from equation (7) since the one term axial velocity profile 
has also been assumed for equation (1). At SC = 270 
(the value for saturated KBr in water), equation (7) gives 
results which are 5 per cent too high. Since the numerical 
solution of equation (1) should also be in error by 
approximately this amount, the calculated ratio should 
be correct. However, the theoretical rates of Fig, 3 are 
based upon equation (l), and the actual slopes should be 
approximately 5 per cent smaller than those shown. This 
discrepancy is roughly equal to the experimental error. 
For the other systems, however, the Schmidt numbers 
are su!kkatIy large such that any discrepancy caused 
by the use of a one-term velocity profile is considerably 
smaller than the experimental error. 

’ /~ c 3.404 

/Lj ._.._...~_, ; 0.3OL 
0,154 ‘p ; i rate 

/ - Calculated 

0 I 2 3 4 

Time, Ill” 

Tfme, men 

FIG. 3. Mass-transfer measurement for potassium 
bromide in water 2S’C, 67 rev/min. Theoretical 
rates from equations (5), (6), and numerical solutions 

of equation (1). Disc diameter = 1 in. 

and diffusivity variations are quite small. Figure 
4 shows the close agreement between the experi- 
mental points and the numerical and integral 
solutions to equation (1). Because of the large 
interfacial velocities at high driving forces, the 
perturbation solution is in error by as much as 
15 per cent. As the driving force decreases to 
zero, the experimental Sherwood number ratios 
approach unity. 
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Mass fraction driving force, w0-wm 

FIG. 4. Sherwood number ratio for potassium bromide. 

Copper surfate pentahydrate 
This system exhibits all four of the effects 

associated with high driving force transfer: the 
diffusivity and viscosity vary by a factor of two 
from saturation to infinite dilution, and the 
density changes by 20 per cent. Because of the 
water of .crystallization present in the disc, a 
solvent flux exists at the surface. The ratio of 
solvent-to-solute mass fluxes at the interface is 
equal to the weight ratio of water of hydration to 
CuSO4 in the solid, or O-565. The results for the 
saturation to infinite dilution driving force are 
shown in Fig. 5. Because of experimental 
difficulties, measurement with the bulk liquid 
pre-loaded with solute could not be performed. 
Calculated rates [based upon numerical solution 
of equation (l)] are plotted for S = 0.565 and 
S = 0, the latter neglecting the fact that water of 
crystallization is present. While the difference 
between the slopes of the two lines is only -5 per 
cent, the rate computed with S = 0.565 is in 
better agreement with the data than that for 
S = 0. While this does not conclusively demon- 
strate the importance of solvent interfacial 
flux, the correction is clearly in the right direction. 

Sucrose 
This system exhibits large variations in density 

and diffusivity, but the most interesting feature 
is the viscosity, which decreases by a factor of 
200 from saturation to infinite dilution. Transfer 
rates computed by numerical solutions of 
equation (1) show marked deviation from the 
experimental points for driving forces > - O-1, 

therefore, the lines in Fig. 6 represent best fits 
to the data. 

At WO - W, = 0.1, the viscosity ratio (disc- 
to-bulk) is 10. Beyond this driving force, the 
major cause of the decrease in Sh/Sh* is the 
viscosity change across the diffusion boundary 
layer. Up to W, - W, N 0.1, Fig. 7 indicates 
that the numerical and integral solutions are in 
good agreement with the data; beyond this, the 
deviations are significantly greater than the 
experimental precision. This discrepancy is 
attributed to a breakdown of the Schuh viscosity 
correction to the velocity profile (equation (2) 
and reference 7) for pO/~oo > 10. 

A more exact‘solution of the diffusion equation 
was carried out in order to account for large 
changes in viscosity. Briefly, this involved first 
solving equation (1) numerically for a particular 
driving force to obtain a first approximation to 
the concentration profile; from this, the viscosity 
was determined as a function of 7. With this 
viscosity function, a more accurate expression 
for the dimensionless velocity profile could be 
derived from equations (52) and (54) of reference 
[3], and the diffusion equation was resolved with 
this new velocity expression. After three intera- 
tions, the process converged to give a constant 
value of the Sherwood number. This value of the 
Sherwood number now represents the complete 
solution to equation (l), accounting for density 
and diffusivity variation and interfacial velocity, 
as well as for the variable viscosity. These results 
are plotted in Fig. 7 as the “iterative solution” 
which agrees with the observed data within the 
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0 Observed points 

25 

Time, min 

FIG. 5. Mass-transfer measurement for copper sulfate in water 25”C, 67 rev/min. 
Theoretical ratio from eauations (5). (6). and the numerical solution of equation (1) 

for S = 0365 aids = 0. Disc diimeter = 2 in. _ 

/w,-w,=o4791 rev/min=67 I W,-W, ,- 

-4 
Time, min 

FIG. 6. Mass-transfer measurements for sucrose in water, 25”C, 67 rev/min. Solid 
line represents best fits to the data. Disc diameter = 2 in. 

experimental error. The large error in the coefficient is obtained by integrating the relation 
experimental Sherwood number ratio is primarily defining a Fick or Maxwell-Stephen diffusion 
a reflection of the doubtful accuracy of the su- coefficient across a fictitious stagnant film 
crose-water diffusion coefficients in the con- adjacent to the surface. If the solvent-solute 
centrated region. The perturbation solution mass flux ratio is S, this approach yields (in 
fortuitously predicts the correct Sherwood terms of mass fractions) 
number ratio at the largest driving force because 
of cancelling viscosity- and i&facial velocity k _- 
errors. ;z-(l + S)[l AV(l + S)]zm’ (12) 

The effect of concentration level The subscript Im denotes a log-mean average, 
In the classic film theory, a mass-transfer and z is the film thickness. The density and 
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1__ Observed ratio 
Perturbation 

solution 

Mass fraction drwng force, W” Mb, 

FIG. 7. Sherwood number ratio for sucrose. 

diffusivity have been assumed constant. Accord- 
ing to equation (12) the effect of changing either 
W, or L+‘, is embodied in the log-mean term. 

Writing equation (6) in the same form: 

k ( %/WY2 
10 I 

1 I _~~.-8L 1 =_- --- 
& 1 -- w, (1 + s>’ (13) 

In equation (13), the effect of changing W, and 
W, is more complex than a simple log-mean 
average. In addition to the right hand side, the 
magnitude of the driving force affects 0: which 
is a function of the parameter EV of equation (3). 
To illustrate the importance of the 

1- W0(1 +s> 

term in the high driving force transfer experi- 
ments described previously, the left-hand side of 
equation (13) has been plotted as a function of 
W,, (1 + S) in Fig. 8. k, was taken from the data 
(except for sucrose experiments at driving forces 
greater than 0.1 which were not used) and 0: was 
calculated from the numerical solution to 
equation (I).? The solid line represents 

11 - wo (1 + S>l-1 
The variation of the mass-transfer coefficient 

with this group is a direct reflection of the 
definition and use of a Maxwell-Stephen rather 
than a Fick diffusion coefficient in the species 

t Although W, does not appear in the parameters of 
Fig. 8, it is implicit in the solution of equation (1) and has 
been included in the caiculation for each case. 

FIG. 8. Theeffect ofsurfaceconcentrationonthemass- 
transfer coefficient. 

conservation relation. A discussion of the 
difference between the two can be found in 
reference 3. 

An important practical implication of these 
results is that a mass-transfer coefficient at one 
pair of bulk and surface concentrations cannot 
be corrected for a different driving force by the 
simple expedient of using the ratio of 

Cl - W(1 -- S>lh, 

even if all properties are concentration in- 
dependent. The change in kw depends upon the 
ratios of [l - W, (1 + S)] and 0: at the two 
concentration levels. Even if the flow is too 
complicated for analysis. the latter ratio can be 
estimated from either the perturbation or integral 
solutions. 
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APPENDIX 

Approximate integral solution to the diffusion 
equation 

The constant property, zero interfacial velocity 
diffusion equation is [3] : 

(I*” + a* Sg” tg*’ zzzz 0 (A-1) 

The solution, subject to the same boundary 
conditions as equation (1) is : 

1 
8* = 1 - rGj3i 1: e-t” dt (A-2) 

where : 
sa*& l/3 

X= 
t-1 3 rl (A-3) 

The thickness of the diffusion boundary layer 
(the value of x at which 13 = 0.01) as can be 
obtained by numerical integration of equation 
(A-2) as -1.4, or: 

/ 2 \1/3 

(A-4) 

An approximate expression for 8* can be written 
in terms of the distance variable v/S* as: 

e* = a0 + al (7/a*) + a2 (7/8*)2 + a3 (7/8*)3 

+ a4 (7/8*)5 

The five constants are evaluated by the con- 
ditions : 

e*(o) = i 

e*yo) = 0 

e*yo) = 0 

e*(i) = 0 

e*‘(i) = 0 (A-5) 

The first and fourth conditions are reflections of 
the boundary conditions. The second and third 
conditions can be obtained directly from 
equation (A-l). The last condition requires that 
the concentration profile have zero slope at the 
outer edge of the boundary layer. These con- 
ditions yield, up to the fourth power in (7/S*): 

e* = i - 413 (7/s*) + i/3 c7/s*)4 (A-6) 

This expression reproduces the exact profile to 
within 10 per cent at all positions. In the presence 
of property variations and an interfacial velocity, 
equation (A-4) is no longer an adequate repre- 
sentation of the diffusion boundary-layer thick- 
ness. It will be assumed, however, that the form 
of equation (A-6) remains a valid approximation 
to the concentration profile if S* is replaced by 
the actual boundary-layer thickness, 6, an 
estimation of which will be presented shortly. 

Substituting equation (A-6) (with the super- 
script * removed) and equation (10) into 
equation (1) and integrating from 7 = 0 to 
7 = 6 yields: 

sh E - e; = 
219 aSco S2 

1 - 0.027 y + cV - E/, (0.856 
- 0.540 y - 0.388 /I) 

(A-7) 

For constant property, zero interfacial velocity 
case, S* can be eliminated from equations (A-6) 
and (A-7), with the result: 

Sh* = - 0:’ = 2/9 a* ScS*2 = [2/9 a* (4/3)s]r/s 
SC113 zzz 0.59 &l/3 (A-8) 

The constant 0.59 in equation (A-8) is 0.62 by 
the exact solution [see equation (7)]. 

In order to evaluate 6 in the general case, 
the form of equation (A-4) was retained and the 
following modifications assumed : 
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(1) the one third power of the diffusivity is 
averaged across the boundary layer: 
(D1’3)_&Vo = JA D1’3.d0 where D(O) is 
given by equation (10). 

(2) The viscosity variation is accounted for by 
multiplying a* by the Schuh correction 
factor [equation (2)]. The kinematic vis- 
cosity in the Schmidt number of equation 
(A-4) retains its wall value, vO, since this is 
used only as a dimensional reference 
parameter. 

(3) Variable density and interfacial velocity 
are accounted for by multiplying the 
constant property thickness by a perturba- 
tion expansion in EV and E,,. 

With these assumptions, the expression for 
the variable property layer thickness is: 

6 z 6* (I - 0.222 y -- 0.167 p) (1 + 0.23 cl. 

lifi 

(A-9) 

The coefficients of EV and cP were determined 
empirically from numerical solutions of the 
diffusion equation with several difierent values 
of EV and f,, (with constant diffusivity). 

Substitutmg equation (A-9) into equation (A-7) 
and using the binomial theorem to combine like 
powers of EV and cp yields an estimate of the 
Sherwood number. Division by equation (A-S) 
then results in equation (11). 

It was found that powers of EV and cP, p. and 
y higher than the first could be neglected with 
little loss in accuracy for a broad range of 
property variations. 

R6ssum&On a mesure experimentalement et compare avec la theorie l’effet de gradients de concentra- 
tion eleves sur la vitesse de transfer? de masse a partir d’un disque en rotation. On a trouve que les 
vitesses mesurees Ctaient en accord avec les solutions numeriques de l’tquation de la diffusion avec 
des proprietes variables et une vitesse interfaciale finie. On a compare aussi les donnees avec les solu- 
tions intdgrale et approchee par la methode des perturbations de l’tquation de la diffusion. Les 
systemes examines Ctaient l’acide benzoique, le bromure de potassium, le sucrose et le sulfate de cuivre 
en solution dans I’eau. Les variations de densite, de visosite et de diffusivite et l’existence dune vitesse 
interfaciale produite par la diffusion peuvent donner des differences aussi grandes qu’un facteur multi- 
plicatif de deux entre les nombres de Sherwood actuels et ceux correspondant a des proprietes con- 

stantes et une vitesse interfaciale nulle. 

Znsammenfassung-Der Einfluss grosser Konzentrationsgradienten auf den Stoffiibergang an einer 
rotierenden Scheibe wurde experimentell ermittelt und mit der lheorie verglichen. Die gemessenen 
Stoffiibergangsraten stimmten iiberein mit den numerischen Losungen der Diffusionsgleichung fur 
veranderliche Stoffwerte und endliche Grenzfllchengeschwindigkeit. Die Ergebnisse wurden such mit 
angenaherten Storungs- und lntegrallijsungen der Diffusionsgleichung verglichen. Die untersuchten 
Systeme bestanden aus Benzoeslure, Bromkalium, Rohrzucker und Kupfersulfat in Wasser. Ander- 
ungen der Dichte, der Ztihigkeit und des Diffusionskoeffizienten wie such die Existenz einer diffusions- 
bedingten Grenzfllchengeschwindigkeit kiinnen zu Unterschieden zwischen der mit konstanten 
Stoffwerten und der Grenzflachengeschwindigkeit Null errechneten Sherwood-Zahlund der tatsachlich 

auftretenden Sherwood-Zahl von der Griisse eines Faktors zwei fiihren. 

,~HHOTsqHsI_3KCneplMeHTajIbHO H3yYeHO BJIliflHIIe 6OJIbI"HX rpa&WleHTOK IiOlI~eHTpa~llIII~a 

cuopocrb nepeuoca naccbr OT sparuaromerocn zucua, II npmegeH0 cpaBHeme c TeopeTmecK- 

IIMEl J(aHHbIMI4. HataeHo, 'IT0 IIOJIyqeHHbIe 3KCnepllMeHTaJIbHbIe 3HaYeHHR CHOpOCTIl COr- 

.-IaCyIOTCH C YMCJIeHHLIMM pelIIeHHRMM ypaBHeHElJ% AII+@y3HEI IIpH KOHeqHOti CKOpOCTM H3 

IIOBepXHOCTIl paaRena Ann cnysan IlepeMeHHLlx CBO~TB. Pe3yJlbTaTbI Tartme CpaBHPIBaJlHCL 
CnpH6JIII~eHHbIMMpelIIeHHRMMBOJIHOBbIX12llHTerpaJIbHbIXypaBHeHIlltAII~~y3EIII.~CCJIeAo- 

BaHHbIe CYICTeMbI IIpeACTaBJIRJIM co6om BOAHbIe paCTBOpbI 6eH3OtiHOti HIICJIOTEJ, 6pOMEICTOrO 

Kamm, caxapo3bI II cynb@aTa MeAH. I/lsMeHeHHe IIJIOTHOCTM, BflSKOCTEI PI KO@@iLV%eHTa 

;[Ml$$y3m,aTaKme Cy~eCTBOBaHHe CKOpOCTHHarpaIIM~e pa3Aena,BMaBaHHOti Am$@y3"ei, 

NOmeT IIpIlBeCTLl K TOMy, 9TO AetiCTBIJTenbHbIe WCJIa NepByAa OTnMYamTcR B ABa pa3a OT 

'IIICeJI sh XJIR IIOCTOFIHHLIX CBOfiCTB II OTCJ-TCTBRR CKopocTH Ha rpaHIlue pamena. 


