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Abstract—The effect of large concentration gradients upon the rate of mass transfer from a rotating
disc has been measured experimentally and compared with theory. Measured rates were found to
agree with the numerical solutions of the variable property, finite interfacial velocity diffusion equation.
The data were also compared with approximate perturbation and integral solutions of the diffusion
equation. The systems investigated were benzoic acid, potassium bromide, sucrose, and copper sulfate
in water. Variations in density, viscosity and diffusivity and the existence of a diffusion-induced
interfacial velocity can result in differences between the constant property, zero interfacial velocity and
the actual Sherwood numbers as large as a factor of two.

NOMENCLATURE

D, diffusion coefficient [cm?2/s];

cw, mass-transfer coefficient based upon
mass fraction driving force, defined by
equation (5) [em/s];

n,  solute mass flux relative to a stationary
observer [g/cm? s];

S,  ratio of solvent to solute mass fluxes at

the surface;

Schmidt number;

Sherwood number, defined by equation

(6);

W, solute mass fraction;

¥y,  distance normal to the disc;

z,  film thickness.

Greek symbols
a, coefficient of first term of power series
expansion of dimensionless axial velocity
about y = 0;
n,  dimensionless axial distance y(w/vo)2;
8,  dimensionless concentration (W — W)/

(Wo — Wo);
ey, interfacial velocity parameter, equation
3):

t Present address: Atomics Internation Division,
North American Aviation, Inc., Canoga Park, California,

ep, diffusivity variation parameter, equation
®);
,» density variation parameter, equation
(4);
p,  solution density [g/cm3];
p,  solution viscosity [P];
v,  kinematic viscosity fcm?/s];
rotational speed of disc [s-1];
constants describing diffusivity varia-
tions, equation (10);
8,  dimensionless diffusion boundary layer
thickness (the value of » at which
g = 0-01).

Subscripts
o,  at the disc surface, » = 0;
oo, in the bulk liquid, » = co;
Jm9 ]Og'meana Xtm = (Xo — Xoo)ﬂn (Xo/xoo).

Superscripts
*,  for constant properties and zero inter-
facial velocity (no mass transfer);
, denotes differentiation with respect to ».

IN RECENT years, considerable attention has been
given to predicting mass-transfer rates in
laminar boundary-layer flows. Most of these
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studies have been restricted to systems in which
some or all of the properties were assumed
constant. However, the physical properties of
many liquid systems are strongly dependent on
composition, and the variation of density,
diffusivity, and viscosity across the diffusion
boundary layer can have a significant effect on
the mass-transfer rate. In addition, the trans-
ferring solute leaves or enters the solid surface
with a finite velocity, which distorts the no mass-
transfer velocity profiles and consequently alters
the convective term in the diffusion equation.
All of these effects become increasingly important
for transfer under large concentration driving
forces.

The paper describes an experimental study of
the phenomena associated with high gradient
transfer. The results are compared with the
various approximate solutions to the diffusion
equation.

The rotating disc was selected for the experi-
mental work, since in the region of high Schmidt
numbers, the mass-transfer behavior of this
system is similar to that for other boundary
layer-type flows (e.g. flat plate, falling liquid
film). Considerable theoretical [1-4] and ex-
perimental [5, 6] background on the rotating
disc system is available.

THEORY

It has been shown previously [3] that the form
of the diffusion equation applicable to high
Schmidt number, variable property boundary
layer type flow is:

D ,
" (3) [o Sco? + ev 616

dln(D/Dy)] .,
- [fp —d—(,"] @r=0 (1
with boundary conditions:
60)=1
6(0)=0

This relation is equivalent to equation (23) of
reference [3] except that the term d In (D/D,)/d8
in equation (1) above is no longer assumed to be
a constant (— €p), and the L(n) term in the earlier
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form is neglected compared to unit (as was also
done subsequently in reference 3). The retention
of an arbitrary diffusivity—composition relation
in the present formulation permits application
of equation (1) to a wider class of binary solutions
than was possible in the earlier work.

Following the notation of reference 3, the
symbols in equation (1) are:

_ax (P2pe)t 2
“=e (pouo,) @
_ W We 3
TETES) — W, ®

dlnp

& =—Wo— Ww)—dﬁ/—
B dlnp¥ 4
=— 35" = constant. )

Equation (2) represents Schuh’s [7] method of
accounting for velocity profile distortion due to
viscosity changes. The parameter «* is the sole
reflection of the flow geometry in the diffusion
equation; for a rotating disc, it has a value of
0-510. The parameter ey represents the effect
of the diffusion-induced interfacial velocity, The
parameter S in (3) is the ratio of the solvent to
solute mass fluxes at the interface. In the ex-
perimental work of this study, it enters in the
dissolution of CuSQj4.5H»0 to water. There is a
flux of water of hydration associated with that
of the copper sulfate, and S is the ratio of the two.
The parameter in equation (4) is not truly a
constant, but for most binary solutions, over
the concentration ranges usually encountered,
variation is to slight that it may be considered
a constant.

A mass-transfer coefficient is defined on a
mass-fraction driving force basis by

o

= ., 5

K Po (Wo — W) )
The Sherwood number is given by
_ 1/2

Sh= [1 — Wo(l + S)] kw (vo/w) 8

D, °

The middle expression in equation (6) is
measurable; for comparison with theory, the



HIGH FLUX SOLID-LIQUID MASS TRANSFER 541

right-hand member is calculable from a solution
to equation (1).

For low driving forces (a = a*, ey = ¢, =0,
D = Dy,). Sparrow and Gregg [4a] have obtained
an analytical solution to equation (1):

Sh* = 0-62'SclP, )

The exact solution to the constant property,
zero interfacial velocity diffusion equation using
a seven-term polynomial for the axial velocity
profile lequations (1) and (7) are based upon a
one term approximation] shows that equation (7)
is approached asymptotically as Sc— cc. At
Sc = 1000, the constant in equation (7) is
0-60 rather than 0-62. In the presence of property
variations, an exact solution to equation (1) is
possible only by numerical integration; a
computer program has been written for this
purpose.

From a practical standpoint, an approximate
analytical solution would be preferable. The
perturbation technique employed previously [3]
predicts:

ShiSh* = {1 4+ 1/2 €, + 0262 ep — 0-566 ey
4 1/6 @ + 0046 &, + 0407 &,
-+ 0215 €, €D — 0-566 €, €D

peo m)us @®
Polo )

The diffusivity variation is embodied in the
parameter ep, which is:

— 0232 ¢p ep}(

dIn(D/D
ep=—(Wo— Ww)———d(—Wl——-"-):
din{D/D
= _—nide—/—g} == constant.  (9)

This formulation, however, is quite restricted in
the range of interfacial velocities and diffusivity
variations over which it can be applied. A more
accurate fit to common diffusivity-composition
curves can be written as a two-parameter
polynomial:

DiDp=1—8(1—-6—y(1—6). (10

This relation is designed to provide accurate
diffusion coefficients in the region close to the
wall, where molecular diffusion predominates.
It can accommodate diffusivity curves with
minima, while equation (9) cannot.

A modified integral technique has been
employed to obtain a solution to equation (1)
using diffusivities expressed by equation (10).
This result is a Sherwood number ratio given by
(see Appendix):

Sh (1 — 0222y — 0167 )2
Sh* T 1 — 0027 y + ey (0-544 + 0-012 )
— ¢, (0656 — 0-545 y — 0-388 f)

16
(Poo #w) - (11
Po o

This relation has been compared to exact
numerical solution of equation (1) for 20
typical high driving force liquid systems. Over the
ranges: — 07 < ey < 30, — 04 < €, < 0-3,
and 0-33 < Do/ D, < 3-0, the integral and exact
solutions of equation (10) agree to within
10 per cent. By comparison, the perturbation
solution, equation (8), is much less satisfactory
when |ey| > 0-4, and when the diffusivity is not
an exponential function of mass fraction over the

concentration interval considered.

Soluble

disc Tank

Drive unit

Fic. 1. Rotating disc apparatus.

EXPERIMENT

The apparatus shown in Fig. 1 was designed
to measure the rate of dissolution of solid,
soluble discs rotating in a quiescent liquid. Two
tank sizes were used: 2 ft x 2 ft x 2 ft and
8 in X 8 in x 9 in. The tanks could be filted
either with pure water or, to alter the driving
force, with solutions of the disc material. All
measurements were carried out at 25°C.

Four systems were studied. The solutes were
benzoic acid, copper sulfate, sucrose, potassium
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Table 1. Physical properties of solute-water systems at 25°C.

Solute

W, D, < 1 Se, o w102 Po D (W = () » 10° References

Benzoic

acid 0-00337 0-94 946 089 0-997 0-94 9]
Potassium o

bromide 0-404 2-55 270 0:950 1-380 2:02 [10, 11}
Copper

sulfate 0-184 $-383 5800 223 1210 -85 {10, 123
Sucrose 0-679 0-357 401 < 10° 1910 1-341 0-52" {10

water: p = 0997 g/em?®; u = 0-00897 P.

a. saturation at 25°C; data taken from references 9 and 10.
b diffusivities for 0 < W < 0-55 from references 13 and 14. A single value was determined from a diaphragm
cell measurement at W ~ 0-61. All data were then combined in a single curve and extrapolated to saturation.
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F1G. 2. Mass-transfer measurement for benzoic acid in
water, 25°C. Theoretical ratio from equations (5),
(6), and (7), with the constant 0-62 in equation (7)
replaced by 0-60. Disc diameters of 2 and 4 in.

bromide and, in each case, the solvent was
water. Benzoic acid and copper sulfate discs
were formed by compacting the powdered
material into smooth, solid cakes, Both 4 and

2 in dia. benzoic acid discs were used ; the copper
sulfate discs were of 2 in dia. The sucrose discs
were formed by casting the molten material into
2 in dia. cylindrical molds which could then be
attached to the rotating shaft. Disc-shaped, ! in
dia. optical crystals of potassium bromide were
obtained from the Harshaw Chemical Co.
Benzoic acid dissolution was measured at
several. different rotational speeds, while the
other systems were all run at 67 rev/min.

The rate of mass transfer into pure water was
determined by periodically sampling the bulk
and analysing the samples for solute concen-
tration. For transfer into solutions of finite
concentration, the rate was measured by weighing
the disc before and after a run. It was not
possible to measure the transfer rate of copper
sulfate for bulk concentrations other than zero.
The compressed cake tended to absorb water,
and any method which removed the absorbed
water also removed an undeterminable amount
of water of hydration. Additional details can be
found in reference 8. The physical property of
the four solute-water systems are listed in
Table 1.

RESULTS AND DISCUSSION
Benzoic acid
Figure 2 presents the mass-transfer results for
benzoic acid into water. This system represents
nothing more than a test of the constant property,
zero interfacial velocity mass-transfer behavior
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of the disc system, since the solubility of ben-
zoic acid in water is too low for any of the effects
associated with large driving forces to appear.
The theoretical transfer rate is based upon the
seven-term velocity profile. At the Schmidt
number characteristic of this system, the one-
term approximation to the axial velocity gives a
Sherwood number ~3 per cent too large. The
good agreement between the theoretical and
experimental results indicate that the hydro-
dynamic model based upon an infinite disc
rotating in an infinite body of quiescent fluid is
in fact realized in the apparatus.

At 371 rev/min, the deviation between ex-
perimental and theoretical results is appreciable.
This is attributed to the tendency of the edges
of the benzoic acid cake to flake off under the
action of the centrifugal forces. The experimental
transfer rates for the 2 and 4 in discs gave the
same close agreement with the theoretical rate.

Potassium bromide

Figures 3(a) and 3(b) present the rates of
transfer of KBr discs to bulk solutions of 0, 0-1,
0-25 and 0-36 mass fraction. The solid lines in the
figure were calculated from the numerical
solution to equation (1). In all cases, the rates
computed from equation (1) were within the
experimental error of the measurement. Figure 4
shows the ratios of the actual Sherwood number
to that for constant properties, zero interfacial
velocity (zero driving force) as a function of the
driving force.t The most important high driving
force effects in this system are the density varia-
tion and the interfacial velocity. The viscosity

t For the experimental Sherwood number ratios,
Sh* is calculated with the seven-term axial velocity
polynomial. For the theoretical ratios, Sk* is calculated
from equation (7) since the one term axial velocity profile
has also been assumed for equation (1). At Sc¢ = 270
(the value for saturated KBr in water), equation (7) gives
results which are 5 per cent too high. Since the numerical
solution of equation (1) should also be in error by
approximately this amount, the calculated ratio should
be correct. However, the theoretical rates of Fig. 3 are
based upon equation (1), and the actual slopes should be
approximately 5 per cent smaller than those shown. This
discrepancy is roughly equal to the experimental error.
For the other systems, however, the Schmidt numbers
are sufficiently large such that any discrepancy caused
by the use of a one-term velocity profile is considerably
smaller than the experimental error.
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F1G. 3. Mass-transfer measurement for potassium

bromide in water 25°C, 67 rev/min. Theoretical

rates from equations (5), (6), and numerical solutions
of equation (1). Disc diameter = 1 in.

and diffusivity variations are quite small. Figure
4 shows the close agreement between the experi-
mental points and the numerical and integral
solutions to equation (1). Because of the large
interfacial velocities at high driving forces, the
perturbation solution is in error by as much as
15 per cent. As the driving force decreases to
zero, the experimental Sherwood number ratios
approach unity.
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F1G. 4. Sherwood number ratio for potassium bromide.

Copper sulfate pentahydrate

This system exhibits all four of the effects
associated with high driving force transfer: the
diffusivity and viscosity vary by a factor of two
from saturation to infinite dilution, and the
density changes by 20 per cent. Because of the
water of crystallization present in the disc, a
solvent flux exists at the surface. The ratio of
solvent-to-solute mass fluxes at the interface is
equal to the weight ratio of water of hydration to
CuSOq in the solid, or 0-565. The results for the
saturation to infinite dilution driving force are
shown in Fig. 5. Because of experimental
difficulties, measurement with the bulk liquid
pre-loaded with solute could not be performed.
Calculated rates [based upon numerical solution
of equation (1)] are plotted for S = 0-565 and
S = 0, the latter neglecting the fact that water of
crystallization is present. While the difference
between the slopes of the two lines is only ~5 per
cent, the rate computed with § = 0-565 is in
better agreement with the data than that for
S = 0. While this does not conclusively demon-
strate the importance of solvent interfacial
flux, the correction is clearly in the right direction.

Sucrose

This system exhibits large variations in density
and diffusivity, but the most interesting feature
is the viscosity, which decreases by a factor of
200 from saturation to infinite dilution. Transfer
rates computed by numerical solutions of
equation (1) show marked deviation from the
experimental points for driving forces > ~ 0-1,

therefore, the lines in Fig. 6 represent best fits
to the data.

At W, — We = 01, the viscosity ratio (disc-
to-bulk) is 10. Beyond this driving force, the
major cause of the decrease in Sh/Sh* is the
viscosity change across the diffusion boundary
layer. Up to W, — Wa ~ 0-1, Fig. 7 indicates
that the numerical and integral solutions are in
good agreement with the data; beyond this, the
deviations are significantly greater than the
experimental precision. This discrepancy is
attributed to a breakdown of the Schuh viscosity
correction to the velocity profile (equation (2)
and reference 7) for po/pw > 10.

A more exact solution of the diffusion equation
was carried out in order to account for large
changes in viscosity. Briefly, this involved first
solving equation (1) numerically for a particular
driving force to obtain a first approximation to
the concentration profile; from this, the viscosity
was determined as a function of %. With this
viscosity function, a more accurate expression
for the dimensionless velocity profile could be
derived from equations (52) and (54) of reference
[3], and the diffusion equation was resolved with
this new velocity expression. After three intera-
tions, the process converged to give a constant
value of the Sherwood number. This value of the
Sherwood number now represents the complete
solution to equation (1), accounting for density
and diffusivity variation and interfacial velocity,
as well as for the variable viscosity. These results
are plotted in Fig. 7 as the “iterative solution”
which agrees with the observed data within the
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Fi1G. 5. Mass-transfer measurement for copper sulfate in water 25°C, 67 rev/min.
Theoretical ratio from equations (5), (6), and the numerical solution of equation (1}
for § = 0-565 and S = 0. Disc diameter = 2 in.
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FiG.

6. Mass-transfer measurements for sucrose in water, 25°C, 67 rev/min. Solid

line represents best fits to the data. Disc diameter = 2 in.

experimental error. The large error in the
experimental Sherwood number ratio is primarily
a reflection of the doubtful accuracy of the su-
crose-water diffusion coefficients in the con-
centrated region. The perturbation solution
fortuitously predicts the correct Sherwood
number ratio at the largest driving force because
of cancelling viscosity and interfacial velocity
errors.

The effect of concentration level
In the classic film theory, a mass-transfer

coefficient is obtained by integrating the relation
defining a Fick or Maxwell-Stephen diffusion
coefficient across a fictitious stagnant film
adjacent to the surface. If the solvent-solute
mass flux ratio is S, this approach yields (in
terms of mass fractions)

kwz 1
D 1+ —W(I+

(12)

The subscript Im denotes a log-mean average,
and z is the film thickness. The density and
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diffusivity have been assumed constant. Accord-

ing to equation (12), the effect of changing either

W, or Wy is embodied in the log-mean term.
Writing equation (6) in the same form:

D, T1—W,(1+ 8y

In equation (13), the effect of changing W, and
W is more complex than a simple log-mean
average. In addition to the right hand side, the
magnitude of the driving force affects 8, which
is a function of the parameter ey of equation (3).
To illustrate the importance of the

1—=Wo(+35)

term in the high driving force transfer experi-
ments described previously, the left-hand side of
equation (13) has been plotted as a function of
Wo (1 4 S) in Fig. 8. k4, was taken from the data
(except for sucrose experiments at driving forces
greater than 0-1 which were not used) and 6, was
calculated from the numerical solution to
equation (1).t The solid line represents

—-w,1+95)7*

The variation of the mass-transfer coefficient
with this group is a direct reflection of the
definition and use of a Maxwell-Stephen rather
than a Fick diffusion coefficient in the species

(13)

+ Although W, does not appear in the parameters of
Fig. 8, it is implicit in the solution of equation (1) and has
been included in the calculation for each case.
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FiG. 8. The effect of surface concentration onthe mass-
transfer coefficient.

conservation relation. A discussion of the
difference between the two can be found in
reference 3.

An important practical implication of these
results is that a mass-transfer coefficient at one
pair of bulk and surface concentrations cannot
be corrected for a different driving force by the
simple expedient of using the ratio of

(1= W1+ lm,

even if all properties are concentration in-
dependent. The change in &, depends upon the
ratios of [l — W, (1 + S)] and 6, at the two
concentration levels. Even if the flow is too
complicated for analysis, the latter ratio can be
estimated from either the perturbation or integral
solutions.
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APPENDIX
Approximate integral solution to the diffusion
equation
The constant property, zero interfacial velocity
diffusion equation is [3]:

6% 4 o* Scn? 0% =0 (A-1)

The solution, subject to the same boundary
conditions as equation (1) is:
6% =1

X o=t 4y (A-2)

1
1@yt

‘a*Sc\13
X:( 3 ) Ui

The thickness of the diffusion boundary layer
(the value of y at which 8 = 0-01) as can be
obtained by numerical integration of equation
(A-2) as ~1-4, or:

1/3
= 14 ()

where :

(A-3)

*Se (A-4)

An approximate expression for §* can be written
in terms of the distance variable 7/8* as:

0* = ao + a1 (n/8*) + ax (n/8%)* + a3 (n/8%)
+ a4 (n/8*)

547

The five constants are evaluated by the con-
ditions:

6*(0) = 1
6%"(0) =0
*"(0) = 0

6%(1) =0

*'(1) =0 (A-5)

The first and fourth conditions are reflections of
the boundary conditions. The second and third
conditions can be obtained directly from
equation (A-1). The last condition requires that
the concentration profile have zero slope at the
outer edge of the boundary layer. These con-
ditions yield, up to the fourth power in (y/8%):

0% =1 —4/3 (n/8*) + 1/3 (n/8%)*  (A-6)

This expression reproduces the exact profile to
within 10 per cent at all positions. In the presence
of property variations and an interfacial velocity,
equation (A-4) is no longer an adequate repre-
sentation of the diffusion boundary-layer thick-
ness, It will be assumed, however, that the form
of equation (A-6) remains a valid approximation
to the concentration profile if 6* is replaced by
the actual boundary-layer thickness, 8, an
estimation of which will be presented shortly.
Substituting equation (A-6) (with the super-
script * removed) and equation (10) into
equation (1) and integrating from » =0 to
n = 8 yields:
Sh=—6 =
2/9 aSc, 82
1 — 0027y + ey — ¢, (0:856
— 0-540 y — 0-388 8)
(A-T)
For constant property, zero interfacial velocity
case, 8* can be eliminated from equations (A-6)
and (A-7), with the result:
Sh¥ = — 67" = 2/9 a* Scé*2 = [2/9 a* (4/3)?]1/3
Scl3 = (0-59 Sc1/3 (A-8)

The constant 0-59 in equation (A-8) is 0-62 by

~ the exact solution [see equation (7)).

In order to evaluate 8 in the general case,
the form of equation (A-4) was retained and the
following modifications assumed:
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(1) the one third power of the diffusivity is
averaged across the boundary layer:
(DY3)ave = [} D¥3.d0 where D(6) is
given by equation (10).

(2) The viscosity variation is accounted for by
multiplying «* by the Schuh correction
factor [equation (2)]. The kinematic vis-
cosity in the Schmidt number of equation
(A-4) retains its wall value, v,, since this is
used only as a dimensional reference
parameter.

(3) Variable density and interfacial velocity
are accounted for by multiplying the
constant property thickness by a perturba-
tion expansion in ey and e,.

With these assumptions, the expression for
the variable property layer thickness is:

§ = 8% (1 — 0222y — 0-167 ) (1 + 0-23 ey
(A-9)

The coefficients of ey and ¢, were determined
empirically from numerical solutions of the
diffusion equation with several difierent values
of ey and ¢, (with constant diffusivity).

Substituting equation (A-9) into equation (A-7)
and using the binomial theorem to combine like
powers of ey and e, yields an estimate of the
Sherwood number. Division by equation (A-8)
then results in equation (11).

It was found that powers of ey and ¢, B. and
y higher than the first could be neglected with
little loss in accuracy for a broad range of
property variations.

Résumé—On a mesuré expérimentalement et comparé avec la théorie 'effet de gradients de concentra-
tion élevés sur la vitesse de transfert de masse & partir d'un disque en rotation. On a trouvé que les
vitesses mesurées étaient en accord avec les solutions numériques de I'équation de la diffusion avec
des propriétés variables et une vitesse interfaciale finie. On a comparé aussi les données avec les solu-
tions intégrale et approchée par la méthode des perturbations de 1’équation de la diffusion. Les
systémes examinés étaient 1’acide benzoique, le bromure de potassium, le sucrose et le sulfate de cuivre
en solution dans P’eau. Les variations de densité, de visosité et de diffusivité et I'existence d’une vitesse
interfaciale produite par la diffusion peuvent donner des différences aussi grandes qu’un facteur multi-
plicatif de deux entre les nombres de Sherwood actuels et ceux correspondant a des propriétés con-
stantes et une vitesse interfaciale nulle.

Zusammenfassung—Der Einfluss grosser Konzentrationsgradienten auf den Stoffilbergang an einer
rotierenden Scheibe wurde experimentell ermittelt und mit der Theorie verglichen. Die gemessenen
Stoffiibergangsraten stimmten iiberein mit den numerischen Losungen der Diffusionsgleichung fiir
veranderliche Stoffwerte und endliche Grenzflichengeschwindigkeit. Die Ergebnisse wurden auch mit
angeniherten Storungs- und Integraildsungen der Diffusionsgleichung verglichen. Die untersuchten
Systeme bestanden aus Benzoesiure, Bromkalium, Rohrzucker und Kupfersulfat in Wasser. Ander-
ungen der Dichte, der Zihigkeit und des Diffusionskoeffizienten wie auch die Existenz einer diffusions-
bedingten Grenzflichengeschwindigkeit konnen zu Unterschieden zwischen der mit konstanten
Stoffwerten und der Grenzflichengeschwindigkeit Null errechneten Sherwood-Zahl und der tatsichlich
auftretenden Sherwood-Zahl von der Grésse eines Faktors zwei fiihren.

AHHOTAIEA—OIKCIEPUMEHTANBHO N3YYEeHO BIHAHKe 0OJbIIMX FPAJMEHTOB KOHIEHTPAIMH Ha
CKOPOCTH TEPEHOCA MACCH OT BPAIAOMIErocA UCKA, I MPUBEJEHO CPaBHEHME C TeOPeTHIECK-
uMu mauHEME. HaftmeHo, YTO MOJNYUeHHBIE JKCIIEPHMCHTAJIbHHE 3HAYEHWA CKODOCTH COr-
JACYIOTCH ¢ YMCICHHHWMH pelleHuAMM ypaBHeHms Ruddysun npu KOHEUHOH CKOPOCTH HA
MOBEPXHOCTH PAa3jieNia AJIfA CIyuas IIePeMeHHHX CBOHCTB. PeayisTarsl Takme CPaBHHBAIMCD
¢ MpUGIMHEHHEIMI PEIIeRNAMM BOTHOBHIX I MHTEIPAIbHHX YpasHennit iuddysnu. Uccaeno-
BAHHHE CUCTEMBI OPeJCTABIANM cO00M BOJHEIE PACTBOPHL 0eH3OUHOH KHCIOTH, GPOMHCTOTO
KAIMsI, caxapoas M cyxabdara mepu. laMeHeHme IUIOTHOCTH, BASKOCTM I KoodduumenTa
anddysmu, a TaKKe CYUECTBOBAHME CKOPOCTH HA TPAaHNUIle Pasfela, BH3BaHHON Auddysuelt,
MOKeT NPUBECTH K TOMY, 4T0 JelicrBuTenbHHEe uucaa lllepByna ormmvaiercs B ABa pasa oT
qncest Sh IIA TMOCTOAHHEIX CBONMCTB If OTCYTCTBHA CKOPOCTM HA TpaHMIE pasgena.



